Bifurcations in Globally Coupled Map Lattices

نویسنده

  • Wolfram Just
چکیده

The dynamics of globally coupled map lattices can be described in terms of a nonlinear Frobenius–Perron equation in the limit of large system size. This approach allows for an analytical computation of stationary states and their stability. The complete bifurcation behaviour of coupled tent maps near the chaotic band merging point is presented. Furthermore the time independent states of coupled logistic equations are analyzed. The bifurcation diagram of the uncoupled map carries over to the map lattice. The analytical results are supplemented with numerical simulations. PACS No.: 05.45

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcations in Globally Coupled Chaotic Maps

We propose a new method to investigate collective behavior in a network of globally coupled chaotic elements generated by a tent map. In the limit of large system size, the dynamics is described with the nonlinear FrobeniusPerron equation. This equation can be transformed into a simple form by making use of the piecewise linear nature of the individual map. Our method is applied successfully to...

متن کامل

Transitivity and blowout bifurcations in a class of globally coupled maps Paul

A class of globally coupled one dimensional maps is studied. For the uncoupled one dimensional map it is possible to compute the spectrum of Liapunov exponents exactly, and there is a natural equilibrium measure (Sinai-Ruelle-Bowen measure), so the corresponding `typical' Liapunov exponent may also be computed. The globally coupled systems thus provide examples of blowout bifurcations in arbitr...

متن کامل

Stabilization of Causally and Non–Causally Coupled Map Lattices

Two-dimensional coupled map lattices have global stability properties that depend on the coupling between individual maps and their neighborhood. The action of the neighborhood on individual maps can be implemented in terms of “causal” coupling (to spatially distant past states) or “non-causal” coupling (to spatially distant simultaneous states). In this contribution we show that globally stabl...

متن کامل

Globally Coupled Maps: Phase Transitions and Synchronization

Bifurcations in a system of coupled maps are investigated. Using symbolic dynamics it is shown that for coupled shift maps the well known space{time{ mixing attractor becomes unstable at a critical coupling strength in favour of a synchronized state. For coupled non{hyperbolic maps analytical and numerical evidence is given that arbitrary small coupling changes the dynamical behaviour. The anom...

متن کامل

M ay 2 00 6 1 Critical properties of phase transitions in lattices of coupled logistic maps

We numerically demonstrate that collective bifurcations in two-dimensional lattices of locally coupled logistic maps share most of the defining features of equilibrium second-order phase transitions. Our simulations suggest that these transitions between distinct collective dynamical regimes belong to the universality class of Miller and Huse model with synchronous update [Marcq et al., Phys. R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995